167 research outputs found

    The relationship between glycaemic variability and cardiovascular autonomic dysfunction in patients with type 1 diabetes : a systematic review

    Get PDF
    Rigorous glycaemic control-reflected by low HbA1c goals-is of the utmost importance in the prevention and management of complications in patients with type 1 diabetes mellitus (T1DM). However, previous studies suggested that short-term glycaemic variability (GV) is also important to consider as excessive glucose fluctuations may have an additional impact on the development of diabetic complications. The potential relationship between GV and the risk of cardiovascular autonomic neuropathy (CAN), a clinical expression of cardiovascular autonomic dysfunction, is of increasing interest. This systematic review aimed to summarize existing evidence concerning the relationship between GV and cardiovascular autonomic dysfunction in T1DM. An electronic database search of Medline (PubMed), Web of Science and Embase was performed up to October 2019. There were no limits concerning year of publication. Methodological quality was evaluated using the Newcastle Ottawa Scale for observational studies. Six studies (four cross-sectional and two prospective cohorts) were included. Methodological quality of the studies varied from level C to A2. Two studies examined the association between GV and heart rate variability (HRV), and both found significant negative correlations. Regarding cardiovascular autonomic reflex tests (CARTs), two studies did not, while two other studies did find significant associations between GV parameters and CART scores. However, associations were attenuated after adjusting for covariates such as HbA1c, age and disease duration. In conclusion, this systematic review found some preliminary evidence supporting an association between GV and cardiovascular autonomic dysfunction in T1DM. Hence, uncertainty remains whether high GV can independently contribute to the onset or progression of CAN. The heterogeneity in the methodological approach made it difficult to compare different studies. Future studies should therefore use uniformly evaluated continuous glucose monitoring-derived parameters of GV, while standardized assessment of HRV, CARTs and other potential cardiac autonomic function parameters is needed for an unambiguous definition of CAN

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    GPS-derived orbits for the GOCE satellite

    Get PDF
    The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk-dawn orbit with an exceptionally low initial altitude of about 280km. The onboard 12-channel dual-frequency GPS (Global Positioning System) receiver delivers 1Hz data, which provides the basis for precise orbit determination (POD) for such a very low orbiting satellite. As part of the European GOCE Gravity Consortium the Astronomical Institute of the University of Bern and the Department of Earth Observation and Space Systems are responsible for the orbit determination of the GOCE satellite within the GOCE High-level Processing Facility. Both quick-look (rapid) and very precise orbit solutions are produced with typical latencies of 1day and 2 weeks, respectively. This article summarizes the special characteristics of the GOCE GPS data, presents POD results for about 2months of data, and shows that both latency and accuracy requirements are met. Satellite Laser Ranging validation shows that an accuracy of 4 and 7cm is achieved for the reduced-dynamic and kinematic Rapid Science Orbit solutions, respectively. The validation of the reduced-dynamic and kinematic Precise Science Orbit solutions is at a level of about 2c

    A 36 µW 1.1 mm2 reconfigurable analog front-end for cardiovascular and respiratory signals recording

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents a 1.2 V 36 µW reconfigurable analog front-end (R-AFE) as a general-purpose low-cost IC for multiple-mode biomedical signals acquisition. The R-AFE efficiently reuses a reconfigurable preamplifier, a current generator (CG), and a mixed signal processing unit, having an area of 1.1 mm2 per R-AFE while supporting five acquisition modes to record different forms of cardiovascular and respiratory signals. The R-AFE can interface with voltage-, current-, impedance-, and light-sensors and hence can measure electrocardiography (ECG), bio-impedance (BioZ), photoplethysmogram (PPG), galvanic skin response (GSR), and general-purpose analog signals. Thanks to the chopper preamplifier and the low-noise CG utilizing dynamic element matching, the R-AFE mitigates 1/f noise from both the preamplifier and the CG for improved measurement sensitivity. The IC achieves competitive performance compared to the state-of-the-art dedicated readout ICs of ECG, BioZ, GSR, and PPG, but with approximately 1.4×-5.3× smaller chip area per channel.Peer ReviewedPostprint (author's final draft

    An artificial iris ASIC with high voltage liquid crystal driver and 10nA light range detector and 40nA blink detector for LCD flicker removal

    Get PDF
    In a functional eye, the iris controls the pupil diameter to regulate the exposure of the retina. While iris deficiencies such as aniridia or leiomyoma can be mitigated with fixed or adaptive artificial irises [1] and adaptive transparency glasses exist to alleviate this situation, they do not mimic the normal functionality of the natural iris. To address this, a fully encapsulated, self-contained artificial iris embedded in a smart contact lens is proposed. A control ASIC is developed in 0.18 μm 16 V BCD TSMC with typ. 1.9 μw current consumption from 3 V supply voltage at office light condition

    Time Multiplexed Active Neural Probe with 678 Parallel Recording Sites

    Get PDF
    We present a high density CMOS neural probe with active electrodes (pixels), consisting of dedicated in-situ circuits for signal source amplification. The complete probe contains 1356 neuron size (20x20 μm2) pixels densely packed on a 50 μm thick, 100 μm wide and 8 mm long shank. It allows simultaneous highperformance recording from 678 electrodes and a possibility to simultaneously observe all of the 1356 electrodes with increased noise. This considerably surpasses the state of the art active neural probes in electrode count and flexibility. The measured action potential band noise is 12.4 μVrms, with just 3 μW power dissipation per electrode amplifier and 45 μW per channel (including data transmission)

    Inhibition of histone deacetylase 6 (HDAC6) protects against vincristine-induced peripheral neuropathies and inhibits tumor growth

    Get PDF
    As cancer is becoming more and more a chronic disease, a large proportion of patients is confronted with devastating side effects of certain anti-cancer drugs. The most common neurological complications are painful peripheral neuropathies. Chemotherapeutics that interfere with microtubules, including plant-derived vinca-alkaloids such as vincristine, can cause these chemotherapy-induced peripheral neuropathies (CIPN). Available treatments focus on symptom alleviation and pain reduction rather than prevention of the neuropathy. The aim of this study was to investigate the potential of specific histone deacetylase 6 (HDAC6) inhibitors as a preventive therapy for CIPN using multiple rodent models for vincristine-induced peripheral neuropathies (VIPN). HDAC6 inhibition increased the level of acetylated α-tubulin in tissues of rodents undergoing vincristine-based chemotherapy, which correlates to a reduced severity of the neurological symptoms, both at the electrophysiological and the behavioral level. Mechanistically, disturbances in axonal transport of mitochondria is considered as an important contributing factor in the pathophysiology of VIPN. As vincristine interferes with the polymerization of microtubules, we investigated whether disturbances in axonal transport could contribute to VIPN. We observed that increasing α-tubulin acetylation through HDAC6 inhibition restores vincristine-induced defects of axonal transport in cultured dorsal root ganglion neurons. Finally, we assured that HDAC6-inhibition offers neuroprotection without interfering with the anti-cancer efficacy of vincristine using a mouse model for acute lymphoblastic leukemia. Taken together, our results emphasize the therapeutic potential of HDAC6 inhibitors with beneficial effects both on vincristine-induced neurotoxicity, as well as on tumor proliferation. ispartof: Neurobiology of Disease vol:111 pages:59-69 ispartof: location:United States status: publishe

    Two-Path All-pass Based Half-Band Infinite Impulse Response Decimation Filters and the Effects of Their Non-Linear Phase Response on ECG Signal Acquisition

    Get PDF
    This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units
    corecore